Let the initial velocity in both cases be
uFirst case :
For first half,
Apply 3rd equation of motion-
v2=u2+2aS
v : Final velocity of the particle
u : Initial velocity of the particle
a : Acceleration of the particle
S : Displacement of the oarticle
v21−u2=2a1x ..........(1)
For another half,
v22−v21=2a2x ...............(2)
Adding (1) and (2) we get
v22−u2=2(a1+a2)x
⟹v2=√u2+2(a1+a2)x ............(a)
Second case :
at=a1+a22
S=2x
∴V2−u2=2(a1+a22)2x
⟹ V=√u2+2(a1+a2)x ..................(b)
Thus from (a) and (b), the final velocity is same in both cases.