The correct option is C Rθ,2Rsinθ2
I Method:
Distance = length of arc AB=Rθ
Displacement, AB=AN+NB=2AN
(∴ AN=NB)
In △ ONA,
ANR=sinθ2 ⇒ AN=Rsinθ2
Displacement, AB=2AN=2Rsinθ2
Alternate method:
Distance = length of arc AB=Rθ
Using cosine law for triangle AOB,
AB=√OA2+OB2−2OA×OBcosθ
AB=√R2+R2−2R2cosθ
=√2R2−2R2cosθ
=√2R2 (1−cosθ)
=√2R2. 2sin2θ2=2Rsinθ2
Final answer: (d)