Let X represent the number of winning prizes in 50 lotteries. The trials are Bernoulli trials.
Clearly, X has a binomial distribution with n=50 and p=1100
∴q=1−p=1−1100=99100
∴P(X=x)=nCxqn−xpx=50Cx(99100)50−x⋅(1100)x
(a) P(winningatleastonce)=P(X≥1)
=1−P(X<1)
=1−P(X=0)
=1−50Cx(99100)50
=1−1⋅(99100)50
=1−(99100)50
(b) P(winningexactlyonce)=P(X=1)
=50C1(99100)49⋅(1100)1
=50(1100)(99100)49
=12(99100)49
(c) P(atleasttwice)=P(X≥2)
=1−P(X<2)
=1−P(X≤1)
=1−[P(X=0)+P(X=1)]
=[1−P(X=0)]−P(X=1)
=1−(99100)50−12⋅(99100)49
=1−(99100)49[99100+12]
=1−(99100)49⋅(149100)
=1−(149100)(99100)49