The correct option is D When the plane passes through (1,1,1) and h+l=0, then p∈(0,1)
Using distance formula,
OP=√h2+k2+l2=p ⋯(1)
When h+k+l=0,
h2+k2+l2>0⇒(h+k+l)2−2(hk+kl+hl)>0⇒hk+kl+hl<0
Dr's of OP,
h√h2+k2+l2,k√h2+k2+l2,l√h2+k2+l2=hp,kp,lp
Let the equation of the plane is,
hpx+kpy+lpz=d
It contains (h,k,l),
h2+k2+l2p=d⇒d=p
Therefore the equation of the plane is,
hx+ky+lz=p2
When the plane passing through (1,1,1) and h+l=0
h+k+l=p2⇒k=p2
From equation (1),
√h2+p4+l2=p⇒h2+p4+l2=p2⇒h2+l2=p2−p4=p2(1−p2)
We know that,
h2+l2>0⇒p2(1−p2)>0⇒p∈(0,1)
Equation of the plane is,
hx+ky+lz=p2
So coordinate of
A=(p2h,0,0)B=(0,p2k,0)C=(0,0,p2l)
Now,
−−→AB=−p2h^i+p2k^j−−→BC=−p2k^j+p2l^k
So the area of the △ABC
12|−−→AB×−−→BC|=12∣∣
∣
∣
∣
∣
∣∣^i^j^k−p2hp2k00−p2kp2l∣∣
∣
∣
∣
∣
∣∣=p42∣∣
∣∣^ikl+^jhl+^kkh∣∣
∣∣=p52hkl
When h=k=l=x, then area of the
△ABC=9√3x22