A plane P intersects lines L1, L2, L3 and L4 at A, B, C, D
L1:x−32=y−31=z−32 L2:x−32=y−31=z2L3:x2=y−31=z2 L4:x2=y−31=z−32
then the minimum area of quadrilateral ABCD is
|→Δ.^n| is minimum area.
→Δ=−−→AB×−−→AC=−3^k×(−3^i−3^k)=9^j^n=13(2^i+^j+2^k)|→Δ.→n|=3