From the conservation of angular momentum about the Sun,
mv0r0sinα=mv1r1=mv2r2 or, v1r1=v2r2=v0r0sinα (1)
From conservation of mechanical energy,
12mv20−γmsmr0=12mv21−γmsmr1
or, v202−γmsr0=v20r20sin2α2r21−γmsr1 (Using 1)
or, (v20−2γmsr0)r21+2γmsr1−v20r20sin2α=0
So, r1=−2γms±√4γ2m2s+4(v20r20sin2α)(v20−2γmsr0)2(v20−2γmsr0)
=1±
⎷1−v20r20sin2αγms(2r0−v20γms)(2r0−v20γms)=r0[1±√1−(2−η)ηsin2α](2−η)
where η=v20r0γms, (ms is the mass of the Sun).