1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

# A point charge Q is located on the axis of a disc of radius R at a distance b from the plane of the disc (figure). Show that if one-fourth of the electric flux from the charge passes through the disc, then R=√3b.

Open in App
Solution

## The total flux produced by the charge is, according to Gauss’s law, is Qenclosedϵ0. Only one quarter of this flux passes through the disk. The flux through the disk is given by: ϕdisk=∫E.dAwhere the integration cover the entire area of the disk. Evaluating this integral and set it equal to Q4ϵ0 relates b to R. As shown in figure, dA is the area of annular ring with radius s and width ds. The electric field at the ring make an angle θ with the normal to to the ring, the flux through the ring is: dϕring=E.dA=EdAcosθ=E(2πsds)cosθThe magnitude of the electric field has the same value at all points on the ring:Ering=Q4πϵ0r2=Q4πϵ0(s2+b2)and, cosθ=b√s2+b2Therefore, dϕring=Qb2ϵ0s(s2+b2)3/2dsTo get the flux through the entire disk we integrate dϕring from s = 0 to s = Rϕdisk=∫R0dϕringAfter integration, ϕdisk=Q2ϵ0[1−b√R2+b2]Since the flux through the disk is already given by Q4ϵ0, then: Q4ϵ0=Q2ϵ0[1−b√R2+b2]which will give 4b2=R2+b2 Therefore, R=√3b

Suggest Corrections
0
Join BYJU'S Learning Program
Related Videos
Electric Flux
PHYSICS
Watch in App
Explore more
Join BYJU'S Learning Program