CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A point charge Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity ω. This can be considered as equivalent to a loop carrying a steady current Qω2π. A uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The applications of the magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant γ.

The magnitude of the induced electric field in the orbit at any instant of time during the time internal of the magnetic field change is


A

BR4

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

BR2

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C

BR

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

2BR

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B

BR2


E.d=dϕdtE=s(dBdt)E(2πR)=(πR2)BE=BR2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Motional EMF
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon