Construction: Join AC, BF and DE.
Proof:
AC is a diagonal of parallelogram ABCD.
So, ar(ΔABC)=ar(ΔACD) ....(i)
Since, Δ ABF and ΔABC we are on the same base AB and between the same parallels AB and DF.
[since, AB || DC and DC produced to F]
∴ar(ΔABF)=ar(ΔABC) .....(ii)
From eqs. (i) and (ii),
ar(ΔABC)=ar(ΔACD)=ar(ΔABF) ...(iii)
On subtracting ar(ΔABE) from both sides of eq. (ii), we get,
ar(ΔABF)−ar(ΔABE)=ar(ABC)−ar(ΔABE)
⇒ar(ΔBEF)=ar(ΔAEC) ...(iv)
Now, ar(AECD)=ar(ACD)+ar(AEC)
=ar(ΔABC)+ar(ΔBEF) [from eqs. (i) and (iv)]
On adding ar ΔCEF on both sides, we get ,
ar(AECD)+ar(ΔCEF)
=ar(ΔABC)+ar(ΔBEF)+ar(ΔCEF)
⇒ar(ΔADF)=ar(ABFC)