The correct option is D a circle
Let A(x1,y1),B(x2,y2) and C(x3,y3) be the vertices of a ΔABC.
Let P(h,k) be a variable point such that
PA2+PB2+PC2=λ2 (constant)
⇒(x1−h)2+(y1−k)2+(x2−h)2+(y2−k)2+(x3−h)2+(y3−k)2=λ2
⇒3h2+3k2−2h(x1+x2+x3)−2k(y1+y2+y3)
+x21+x22+x23+y21+y22+y23−λ2=0
Hence, the locus of (h,k) is
3x2+3y2−2(x1+x2+x3)x−2(y1+y2+y3)y
+x21+x22+x23+y21+y22+y23−λ2=0
⇒x2+y2−2(x1+x2+x33)x−2(y1+y3+y33)y
+13(x21+x22+x23+y21+y22+y23−λ2)=0
Clearly, it represents a circle.