A point moves so that the sum of its distances from the points (4, 0, 0) and (-4, 0, 0) remains 10. The locus of the point is
[MP PET 1988]
9x2+25y2+25z2=225
√(x−4)2+y2+z2+√(x+4)2+y2+z2=10⇒2(x2+y2+z2)+0√[(x−4)2+y2+z2][(x+4)2+y2+z2]=100−32=68⇒(x2+y2+z2−34)2=[(x−4)2+y2+z2][(x+4)2+y2+z2]⇒[(x2+y2+z2+16)−8x][(x2+y2+z2+16)+8x]=(x2+y2+z2+16)2−4x2=(x2+y2+z2)+32(x2+y2+z2)−64x2+(16)2⇒9x2+25y2+25z2−225=0.