Let the points be
(x1,y1),(x2,y2),(x3,y3)....(xn,yn) and let the given sum of distances be t
The point is given by (x,y)
(x−x1)2+(y−y1)2+(x−x2)2+(y−y2)2+(x−x3)2+(y−y3)2+...=t
⇒ nx2+ny2−2(x1+x2+x3+...xn)x−2(y1+y2+y3+...yn)y+
(x21+x22+x23+...)+(y21+y22+y23...)=t
⇒x2+y2−2n(x1+x2+x3+....)−2n(y1+y2+y3+....)+(x1+x2+x3+...)2n2+(y1+y2+y3+...)2n2=tn−(x21+x22+x23+...)n−(y21+y22+y23+...)n+(x1+x2+x3+...)2n2+(y1+y2+y3...)2n2
⇒(x−(x1+x2+x3+...)n)2+(y−(y1+y2+y3+...)n)2=tn−(x21+x22+...)n−(y21+y22+..)n+(x1+x2+...)2n2+(y1+y2+...)2n2
This is an equation of circle with centre at (x1+x2+x3+...n,y1+y2+y3+...n)
Hence proved, the locus of the point is a circle.