wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A point O is the centre of a circle circumscribed about a triangle ABC. Then ¯¯¯¯¯¯¯¯OAsin2A¯¯¯¯¯¯¯¯OBsin2B+¯¯¯¯¯¯¯¯OCsin2C is equal to

Open in App
Solution

Let V=OAsinA+OBsin2B+OCsin2C
V.OA=(OA).(OA)sin2A+(OA)(OB)sin2B+(OA).(OC)sin2C
V.OA=R2sin2A+R2cos2Csin2B+R2cos2Bsin2C
V.OA=R2sinA+R2[sin2Bcos2C+cos2Bsin2C]
=R2sin2A+R2sin(2B+2C)
=R2sin2AR2sin2A
V.OA=O
Similarly V.OB=O
V.OC=0
V.OA=V.OB=V.OC=O
Hence, V=0
OAsin2A+OBsin2B+OCsin2C=O

1083385_1187719_ans_bfa4b5aca78e4634a67d745948128892.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inscribed Angle Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon