A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is (a32+b23)32
Let P be a point on the hypotenuse AC of right angled ΔABC. Such that PL⊥AB=a and PM⊥BC=b
Let ∠APL=∠ACB=θ (say)
AP=a sec θ,PC=b cosec θ
Let l be the length of the hypotenuse, then
AP=a sec θ,PC=b cosec θ
Let l be the length of the hypotenuse, then
l=AP+PC⇒l=a sec θ+b cosec θ,0<θ<π2
On differentiating w.r.t. θ, we get
dldθ=a sec θtan θ−b cosec θ cot θ
For maxima or minima put dldθ=0
⇒a sec θ=b cosec θ cot θ⇒a sin θcos2θ=b cos θsin2θ⇒tan θ=(ba)13
Now, d2ldθ2=a(secθ×sec2θ+tan θ×sec θ tan θ]
−b[cosec θ(−cosec2θ)+cot θ(−cosec θ cot θ)]=a sec θ(sec2θ+tan2θ)+b cosec θ(cosec2θ+cot2θ)
Since, 0<θ <π2, so, trigonometric ratios are positve.
Also, a > 0 and b > 0.
∴d2ldθ2 is positive.
⇒ l is least when tan θ=(ba)13
∴ Least value of l=a sec θ+b cosec θ
=a√a23+b23a13+b=a√a23+b23a13=√a23+b23(a23+b23)=(a23+b23)32
∵InΔEFG,sec θ=√a22+b23a13and cosec θ=√a22+b23a13
Hence proved.