Let
P be a point on the hypotenuse
AC of right
△ABC such that
PL⊥AB=a
PM⊥BC=b
Let ∠APL=∠ACB=θ
AP=asecθ and PC=bcosecθ
Let l be the length of the hypotenuse, then l=AP+PC
⇒asecθ+bcosecθ, 0<θ<π2
Now differentiate l with respect to θ, we get
dldθ=asecθ.tanθ−bcosecθ.cotθ
For maxima and minima dldθ=0
Thus asecθ.tanθ=bcosecθ.cotθ
⇒asin3θ=bcos3θ
ab=cos3θsin3θ
Thus ba=tan3θ
⇒tanθ=[ba]13
Now d2ldθ2=a(secθ.sec2θ+tanθ.secθ.tanθ)
=−b(cosecθ(−cosec2θ)+cotθ(−cosecθ.cotθ))
=asecθ(sec2θ+tan2θ)+bcosecθ×bcosecθ+cot2θ
Since 0<θ<π2, so all t ratios of θ are positive.
Also a>0 and b<0
Therefore, d2ldθ2 is positive.
⇒ l is least when tanθ=[ba]13
Least value of l =asecθ+bcosecθ
=a.√a23+b23a13+b.√a23+b23b13
=√a23+b23(a23+b23)
=(a23+b23)32
Hence, proved.