Relation between Inradius and Perimeter of Triangle
A point P is ...
Question
A point P is given on the circumference of a circle of radius r the chord QR is parallel to the tangent line at P and the maximum area of ΔPQR is 3√3r2b where r is radius of circle, evaluate b.
Open in App
Solution
ON⊥QR QR=2QN=2rsinθ ON=rcosθ area of ΔPQR=12(2rsinθ)×(r+rcosθ) A=r2{sinθ+sinθcosθ} A=r2[sinθ+sin2θ2] dAdθ=r2(cosθ+cos2θ) dAdθ=r2(cosθ+cos2θ) d2Adθ2=r2(−sinθ−2sin2θ) NowformaximumareadAdθ=0,d2Adθ2<0 cos2θ+cosθ=0 cos2θ=−cosθ 2θ=π−θ⇒θ=π3 clearly d2Adθ2<0 maximumarea=3√3r24 b=4