The correct option is D 3y−3x=40
Let the variable line be y=mx
Therefore the coordinates of point p is (h,mh)
Therefore A being the coordinates of the intersection of y=mx with y−x−10=0 implies
A=(10m−1,10mm−1)
Similarly B being the coordinates of the intersection of y=mx with y−x−20=0 implies
B=(20m−1,20mm−1)
Hence, OP=h√1+m2
⇒OA=10√1+m2m−1
⇒OB=20√1+m2m−1
Since 2OP=1OA+1OB
Hence, 2h(√1+m2)=m−110(√1+m2)+m−120(√1+m2)
⇒2h=3(m−1)2
⇒4=3mh−3h
⇒3(y)−3(x)=40
⇒3x−3y+40=0