Suppose that the co-ordinates of the point are (x , y), then the given condition
√[(x−ae)2+y2]+√[(x+ae)2+y2]=2a .........(1)
Now
[(x−ae)2+y2]−[(x+ae)2+y2]=−4aex ............(2)
[∵(a−b)2−(a+b)2=−4ab]
On dividing (2) by (1), we get
√[(x−ae)2+y2]−√[(x+ae)2+y2]=−2ex
[∵L−M(√L)+(√M)=(√L)−(√M)]
Adding (1) and (3) we get
2√[(x−ae)2+y2]=2(a−ex). Square
x2−2aex+a2e2+y2=a2−2aex+e2x2
or x2(1−e2)+y2=a2(1−e2)
or x2a2+y2a2(1−e2)=1
Note : The above method will be referred to as L-M method throughout this book.