A polynomial function f(x) satisfies the condition f(x+1)=f(x)+2x+1 Find f(x) if f(0)=1 Find also the equations of the pair of tangents from the origin on the curve y=f(x) and compute the area enclosed by the curve and the pair of tangents
A
f(x)=x2+1;y=±x;A=23sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)=x2+1;y=±x;A=43sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(x)=x2+1;y=±2x;A=23sq.units
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f(x)=x2+1;y=±2x;A=43sq.units
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bf(x)=x2+1;y=±2x;A=23sq.units f(x+1)=f(x)+2x+1 ⇒f′′(x+1)=f′′(x)∀×∈R Let f"(x)=a⇒f′(x)=ax+b⇒f(x)=ax22+bx+c⇒c=1[∵f(0)=1] Now f(x+1)−f(x)=2x+1⇒[a2(x+1)2+b(x+1)+c]−[ax22+bx+c]=2x+1⇒ax+a2+b=2x+1 on comparing we get a = 2 or a2+b=1⇒b=0 ∴f(x)=x2+1.........(i) Now let equation of tangent be y=mx.......(ii) From (i) and (ii), we get x2−mx+1=0⇒m=±2 ∴tangentsarey=2xory=−2xA=2∫10(x2+1−2x)dx=23