The correct option is D 76x2+32x−23
Given: 2,1 and −1 are remainders when polynomial is divided by (x−1),(x+2) and (x+1)
Now, let the required polynomial be f(x)=p(x)(x−1)(x+2)(x+1)+a0x2+a1x+a2
By remainder theorem, we know f(1)=2,f(−2)=1,f(−1)=−1
⇒f(1)=p(1)(1−1)(1+2)(1+1)+a0(1)2+a1(1)+a2=2
⇒f(1)=a0+a1+a2=2⋯(i)
⇒f(−2)=p(−2)(−2−1)(−2+2)(−2+1)+a0(−2)2+a1(−2)+a2=1
⇒f(−2)=4a0−2a1+a2=1⋯(ii)
⇒f(−1)=p(−1)(−1−1)(−1+2)(−1+1)+a0(−1)2+a1(−1)+a2=−1
⇒f(−1)=a0−a1+a2=−1⋯(iii)
On solving (i),(ii),(iii) we get, a0=76,a1=32,a2=−23
∴f(x)=p(x)(x−1)(x+2)(x−1)+76x2+32x−23
Now if we divide f(x) by (x−1)(x+2)(x+1) remainder will be 76x2+32x−23