The correct option is C Non integers
F(0)→ odd integer ⇒a0→ odd integer.
F(1)→ odd integer
⇒a0+a1+...+an−1→ odd
∴a1+a2+...+an−1→ even.
Now, suppose roots are even integers x=2m
∴F(2m)=a0+a1(2m)+a2(2m)2+....+an−1(2m)n−1
Odd Even Even ... Even
So, F(2m)= odd ≠0
⇒ Even integers roots is not possible.
Now, suppose roots are odd integers x=2m+1
∴F(2m+1)=a0+a1(2m+1)+a2(2m+1)2+...+an−1(2m+1)n−1
=a0+(even+1)a1+(even+1)2a2+.....+(even+1)nan+(2m+1)n
=even(a1+a2+a3+....+an−1)( even)+a0+a1+a2+a3+....+an−1( even)+odd
f(2m+1)=odd≠0
⇒ Roots cannot be odd integers.
Hence, roots are non-integers.