(a) Prove that:
(1+tan A)2+(1−tan A)2=2 sec2 A
(b) If sin (A + B) = 1 and cos (A - B) = 1, find the values of A and B. Given 0≤90∘ and A≥B [6 MARKS]
Each Part: 3 Marks
(a)LHS =(1+tan A)2+(1−tan A)2
=(1+sin Acos A)2+(1−sin Acos A)2
=(cos A+sin A)2cos2 A+(cos A−sin A)2cos2 A
=(cos2 A+sin2 A+2 sin A cos A)+(cos2 A+sin2 A−2 sin A cos A)cos2 A
=2 sin2 A+2 cos2 Acos2 A=2(sin2 A+cos2 A)cos2 A
=2cos2 A=2 sec2 A=RHS
Hence, proved
(b) Given: sin(A+B)=1
⇒sin(A+B)=sin 90∘ [∵sin 90∘=1]
⇒sin(A+B)=sin 90∘……(i)
Also cos(A−B)=1
⇒cos(A−B)=cos 0∘ [∵cos 0∘=1]
⇒A−B=0……(ii)
Solving equations (i) and (ii) we get; A=45∘ and B=45∘
Hence, A=B=45∘