(a)∫a−af(x)dx=∫0−af(x)dx+∫a0f(x)dxPut x=−t in first integral ⟹dx=−dt
When x=−a,t=a
x=0,t=0
∫a−af(x)dx=−∫0af(−t)dt+∫a0f(x)dx
=∫a0f(t)dt+∫a0f(x)dx ....... (Since, f is even)
=∫a0f(x)dx+∫a0f(x)dx
=2∫a0f(x)dx
∫a−af(x)dx=−∫0af(−t)dt+∫a0f(x)dx
=−∫a0f(t)dt+∫a0f(x)dx ..... (Since, f is odd. So, f(−t)=−f(t))
=−∫a0f(x)dx+∫a0f(x)dx
=0
To evaluate ∫1−1sin5xcos4xdx
sin(−x)=−sinx and cos(−x)=cosx
⟹sinx is odd and cosx is even
⟹sin5x is odd and cos4x is even
⟹f(x)=sin5xcos4x is odd
⟹∫1−1sin5xcos4xdx=0 ...... (∵f(x)=sin5xcos4x is an odd function)
(b)
Consider, ∣∣
∣
∣∣a2+1abacabb2+1bccacbc2+1∣∣
∣
∣∣
=(a2+1)∣∣∣b2+1bccbc2+1∣∣∣−ab∣∣∣abbccac2+1∣∣∣+ac∣∣∣abb2+1cacb∣∣∣
=(a2+1)[b2c2+b2+c2+1−cbbc]−ab[abc2+ab−abc2]+ac[ab2c−ab2c−ac]
=(a2+1)[b2+c2+1]−ab[ab]+ac[−ac]
=a2b2+a2c2+a2+b2+c2+1−a2b2−a2c2
=a2+b2+c2+1
Hence, ∣∣
∣
∣∣a2+1abacabb2+1bccacbc2+1∣∣
∣
∣∣=1+a2+b2+c2