a) Prove that a∫0f(x)dx=a∫0f(a−x).dx and hence evaluate π/4∫0log(1+tanx)dx b) Find the value of k, if f(x)=⎧⎪
⎪⎨⎪
⎪⎩kcosxπ−2xifx≠π23ifx=π2 is continuous at x=π2.
Open in App
Solution
(a)
Consider ∫a0f(x)dx ........... (1)
Put a−x=u⟹−dx=du
When x=0⟹u=a
When x=a⟹u=0
⟹∫a0f(x)dx=−∫0af(a−u)du
=∫a0f(a−u)du
=∫a0f(a−x)dx
∴I=∫π/40log(1+tanx)dx=∫π/40log(1+tan[π4−x)])dx .... Using above inequality