CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
270
You visited us 270 times! Enjoying our articles? Unlock Full Access!
Question

a) Prove that a0f(x)dx=a0f(ax).dx and hence evaluate
π/40log(1+tanx)dx
b) Find the value of k, if
f(x)=⎪ ⎪⎪ ⎪kcosxπ2xifxπ23ifx=π2
is continuous at x=π2.

Open in App
Solution

(a)
Consider a0f(x)dx ........... (1)
Put ax=udx=du
When x=0u=a
When x=au=0
a0f(x)dx=0af(au)du
=a0f(au)du
=a0f(ax)dx
I=π/40log(1+tanx)dx=π/40log(1+tan[π4x)])dx .... Using above inequality
=π/40log(1+tan(π4)tanx1+tan(π4)tanx)
=π/40log(1+1tanx1+tanx)
=π/40log(21+tanx)
=π/40log2log(1+tanx)dx
=π/40log2π/40log(1+tanx)dx
=π/40log2I
2I=log2[x]π/40
2I=(log2)π4
I=π8log2

(b)
Given f(x)=⎪ ⎪⎪ ⎪kcosxπ2xifxπ23ifx=π2
is continuous at x=π2
limxπ2f(x)=f(π2)

limxπ2kcosxπ2x=3

limxπ2ksinx2=3 ..... Using L'Hospital's rule

ksin(π2)2=3
k=6
Hence, k=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon