(a) sin[tan−11−x22x+cos−11−x21+x2]=1
Put x=tanθ
L.H.S.=sin[tan−11−tan2θ2tanθ+cos−11−tan2θ1+tan2θ]
=sin[tan−1cot2θ+cos−1cos2θ]
=sin[tan−1tan(π/2−2θ)+2θ]
=sin[π/2−2θ+2θ]=sin(π/2)=1.
Hence provedGiven sin−1A+cos−1B=π2.........(1)
But sin−1A+cos−1A=π2........(2)
From (1) and (2),we conclude that A=B
∴ x−x22+x34....=x2−x42+x64.....
or x1−(−x2)=x21−−(x22) by S∞ of a G.P.
or x(2+x2)=x2(2+x)
or 2x(x−1)=0
∴ x=1 as x≠0