(a) B2−4Ac=4(a+b−2c)2−4(a−b)2
Δ=4[(2a−2c)(2b−2c)]
by factors of p2−q2
=4×2×2(c−a)(c−b), a<b.
If c lies between a and b, i.e. a<c<b, then
Δ=B2−4AC is −ive
Hence the roots will be imaginary.
If c does not lie between a and b i.e. either c<a or c>b then
Δ=B2−4AC is +ive
Hence the roots will be real.
(b) Roots are real and +ive if
(1) Δ≥0, (2) S+ive (3) P+ive
(1) ⇒mϵ[0,154]
(2) ⇒mϵ[0,154]m(m−3)>0 or m<0 or m>3
(3) ⇒ same as (2).
Hence combining,we can say
m>3 and ≤154 ≤154 or mϵ]3,154].
(c) Since both the roots are −ive, the roots are real so that
Δ≥0,S<0,P>0
Δ≥0⇒(a−1)(a−6)≥0
or a≤1 or a≥6.........(1)
S<0⇒(a+1)<0
⇒ a+1>0⇒a>−1.........(2)
P>0⇒9a−5>0⇒a>59.........(3)
The value a≥6 satisfies all the three criteria.
(d) f(x)=(x−α)(x−β)=0 must satisfy the following :
(a) Δ≥0 (b) S>6
and f(3)=(3−α)(3−β)=(−)(−)=+ive
Δ≥0⇒a≥1.........(1)
S>6⇒a>1........(2)
f(3)>0⇒9a2−20a+11>0
or 9(a−1)(a−11/9)>0
⇒ a<1 or a>11/9
Clearly a>119 satisfies both (1) and (2) also.