A quadratic equation with integral coefficient has two different prime numbers as its roots if the sum of the coefficients of the equation is prime, then the sum of the roots is
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
11
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B5 Let equation is k(x−α)(x−β)=0 where α,β are prime numbers. Sum of coefficents =k+k(α+β)+kαβ=k(α−1)(β−1) ⇒k=1 and one of (α−1)and(β−1) will be one. Let α−1=1⇒α=2 β−1 will be 2. So, β=3 Hence, sum of roots =5.