A quadrilateral ABCD in which AB=a,BC=b,CD=c and DA=d is such that one circle can be inscribed in it and another circle circumscribed about it, then cosA=ad+bcad−bc.
A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B False Since a circle can be inscribed in the quadrilateral, we have a+c=b+d and since the quadrilateral is cyclic, C=π−A cosA=a2+d2−BD22ad ⇒2adcosA=a2+d2−BD2 ⇒2adcosA=a2+d2−[b2+c2−2bccosC] =a2+d2−b2−c2+2bccos(π−A)∵C=π−A =a2+d2−b2−c2+2bccosA ⇒2(ad+bc)cosA=a2+d2−b2−c2 cosA=a2+d2−b2−c22(ad−bc) Now, a+c=b+d⇒a−d=b−c Now, a2+d2−b2−c2 =[a2+d2]−[b2+c2] =[(a−d)2+2ad]−[(b−c)2+2bc] =[(a−d)2+2ad−(a−d)2−2bc] from above condition a−d=b−c =2ad−2bc on simplification =2(ad−bc) ∴cosA=a2+d2−b2−c22(ad+bc) =2(ad−bc)2(ad+bc) =(ad−bc)(ad+bc)