Let A be amount of mass at the time t
dAdt∝A
dAdt=KA ........(*)
dAA=Kdt
∫dAA=∫Kdt
⇒logA=Kt+logc
⇒logAc=Kt
⇒Ac=eKt
⇒A=ceKt ......(1)
when t=0, A=10
(1) ⇒10=ce0
c=10
∴ the solution is A=10eKt.
Given when A=10, dAdt=−0.051 (∴ disintegration)
⇒−0.051=10k (by*)
⇒K=−0.0051
∴A=10e−0.0051t
To find t when A=5
∴A=10e−0.0051t
To find t when A=5
⇒5=10e−0.0051t
⇒12=e−0.0051t
⇒2=e−0.0051t
⇒log2=loge−0.0051t
⇒0.0051t=log2
⇒t=log20.0051=0.69310.0051=136 days.