A real value of b for which the equations x2+bx−1=0,x2+x+b=0 have one root in common is .....................
Open in App
Solution
If a1x2+b1x+c1=0 and a2x2+b2x+c2=0 have a common real root, then ⇒(a1c2−a2c1)2=(b1c2−b2c1)(a1b2−a2b1) x2+bx−1=0,x2+x+b=0 have a common root ⇒(1+b)2=(b2+1)(1−b) ⇒b2+2b+1=b2−b3+1−b ⇒b3+3b=0 ∴b(b2+3)=0 ⇒b=0,±√3i