A real valued function f(x) satisfies the function equation f(x−y)=f(x)f(y)−f(a−x)f(a+y) where a is a given constant f(0)=1 , f(2a−x) is equal to
-f(x)
f(a−(x−a))=f(a)f(x−a)−f(x)f(x)...(i)
Put x=0,y=0;f(0)=(f(0))2−[f(a)]2 ⇒ f(a)=0
[∵ f(0)=1].From(i), f(2a−x)=−f(x)