Given that,
Rate of water flowing out ∝ Quantity of water present in reservoir at that instant (Q)
⇒ −dQdt∝Q
⇒−dQdt=KQ ; K is proportionality constant.
⇒dQQ=−Kdt −(i)
On integrating both sides of (i):
⇒∫dQQ=−∫Kdt
logeQ=−Kt+C ; is the constant of integration
At, t=0 let Q=Q0 (initial quantity of water present)
⇒C=logeQ0
∴ logeQ=−Kt+logeQ0
⇒−logeQ+logeQ0=Kt
⇒K=1tloge(Q0Q) −(ii)
As given in the question,
In t=5min, (1/3)rd of water flows out.
So, water remaining after t=5min=1−13=(23rd)
Putting the values in eqn(ii)
K=15loge⎛⎜
⎜
⎜⎝Q023Q0⎞⎟
⎟
⎟⎠
⇒K=15loge(32) −(iii)
& After, t=10min, Q=?
so, K=110loge(Q0Q) −(iv)
(iii) & (iv) ⇒ 110loge(Q0Q)=15loge(32)
⇒ loge(Q0Q)=2loge(32)
⇒loge(Q−0Q)=loge(32)2
Taking antilog on both sides:-
⇒ Q0Q=94⇒QQ0=49
So after 10 min (49)th of the water will be left.