A resistance thermometer reads R = 20.0 Ω, 27.5 Ω, and 50.0 Ω at the ice point (0∘C), the steam point (100∘C) and the zinc point (420∘C) respectively. Assuming that the resistance varies with temperature as Rθ=R0(1+αθ+βθ2), find the values of R0, α and β. Here θ represents the temperature on Celsius scale.
R at ice point (R0)=20 Ω
R at steam point (R100)=27.5 Ω
R at zinc point (R420)=50 Ω
Rθ=R0(1+αθ+βθ2)
⇒ R100=R0+R0 αθ+R0 βθ2
⇒ (R100−R0)R0=αθ+βθ2
⇒ 27.5−2020=αθ+βθ2
⇒ 7.520=α 100+β 10000 ⋯(i)
Again R420=R0(1+αθ+βθ2)
⇒ 50−R0R0=αθ+βθ2
50−2020=420α+176400β
⇒ 32=420α+176400β ⋯(ii)
After solving (i) and (ii), we get
α=3.5×10−3/∘C
β=−5.6×10−7/∘C