1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

# A right circular cone is divided into three parts by trisecting its height by two planes drawn parallel to the base. Show that the volume of the three portions starting from the top are in the ratio 1 : 7 : 19. [CBSE 2017]

Open in App
Solution

## Let ABC be a right circular cone of height 3h and base radius r. This cone is cut by two planes such that AQ = QP = PO = h. Since $∆\mathrm{ABO}~∆\mathrm{AEP}$ (AA Similarity) $\therefore \frac{\mathrm{AO}}{\mathrm{AP}}=\frac{\mathrm{BO}}{\mathrm{EP}}\phantom{\rule{0ex}{0ex}}⇒\frac{3h}{2h}=\frac{r}{{r}_{1}}\phantom{\rule{0ex}{0ex}}⇒{r}_{1}=\frac{2r}{3}.....\left(1\right)$ Also, $∆\mathrm{ABO}~∆\mathrm{AGQ}$ (AA Similarity) $\therefore \frac{\mathrm{AO}}{\mathrm{AQ}}=\frac{\mathrm{BO}}{\mathrm{GQ}}\phantom{\rule{0ex}{0ex}}⇒\frac{3h}{h}=\frac{r}{{r}_{2}}\phantom{\rule{0ex}{0ex}}⇒{r}_{2}=\frac{r}{3}.....\left(2\right)$ Now, Volume of cone AGF, ${V}_{1}=\frac{1}{3}\mathrm{\pi }{{r}_{2}}^{2}h\phantom{\rule{0ex}{0ex}}=\frac{1}{3}\mathrm{\pi }{\left(\frac{r}{3}\right)}^{2}h\left[\mathrm{From}\left(2\right)\right]\phantom{\rule{0ex}{0ex}}=\frac{1}{27}\mathrm{\pi }{r}^{2}h$ Voulme of the frustum GFDE, ${V}_{2}=\frac{1}{3}\mathrm{\pi }\left({{r}_{1}}^{2}+{{r}_{2}}^{2}+{r}_{1}{r}_{2}\right)h\phantom{\rule{0ex}{0ex}}=\frac{1}{3}\mathrm{\pi }\left(\frac{4{r}^{2}}{9}+\frac{{r}^{2}}{9}+\frac{2{r}^{\mathit{2}}}{9}\right)h\left[\mathrm{From}\left(1\right)\mathrm{and}\left(2\right)\right]\phantom{\rule{0ex}{0ex}}=\frac{7}{27}\mathrm{\pi }{r}^{2}h$ Voulme of the frustum EDCB, ${V}_{3}=\frac{1}{3}\mathrm{\pi }\left({r}^{2}+{{r}_{1}}^{2}+{r}_{1}r\right)h\phantom{\rule{0ex}{0ex}}=\frac{1}{3}\mathrm{\pi }\left({r}^{2}+\frac{4{r}^{2}}{9}+\frac{2{r}^{\mathit{2}}}{3}\right)h\left[\mathrm{From}\left(1\right)\mathrm{and}\left(2\right)\right]\phantom{\rule{0ex}{0ex}}=\frac{19}{27}\mathrm{\pi }{r}^{2}h$ ∴ Required ratio = ${V}_{1}:{V}_{2}:{V}_{3}=\frac{1}{27}\mathrm{\pi }{r}^{2}h:\frac{7}{27}\mathrm{\pi }{r}^{2}h:\frac{19}{27}\mathrm{\pi }{r}^{2}h=1:7:19$

Suggest Corrections
2
Join BYJU'S Learning Program
Related Videos
Shape Conversion of Solids
MATHEMATICS
Watch in App
Explore more
Join BYJU'S Learning Program