A right triangle ABC circumscribes a circle of radius r. If AB and BC are of length 8 cm and 6 cm respectively, find the value of r?
AB, BC and CA are tangents to the circle at P, N and M.
∴OP=ON=OM=r (radius of the circle)
Area of ΔABC=12×6×8=24 cm2
By pythagoras theorem, we have
CA2=AB2+BC2
⇒CA2=82+62
⇒CA2=100
⇒CA=10 cm
Area of ΔABC = Area of ΔOAB+ Area ΔOBC+ Area ΔOCA
⇒24=12×r×AB+12×r×BC+12×r×CA
⇒24=12r(AB+BC+CA)
⇒r=2×24AB+BC+CA
⇒r=488+6+10
⇒r=4824
⇒r=2 cm