AC = AB + BC
Or, AC = 3 + 4
Or, AC = 9 + 16 = 25
Or, AC = 5 cm
In triangle ABC and triangle BDC;
∠ABC=∠BDC (right angle)
∠BAC=∠DBC Hence.
ΔABC∼ΔBDC So, we get following equations:
ABAC=BCBC Or,
35=BD4 Or,
BD=3×45=2.4 In triangle BDC;
DC = BC – BD
Or, DC = 4 – 2.4
Or, DC = 16 – 5.76 = 10.24
Or, DC = 3.2
From above calculations, we get following measurements for the double cone formed:
Upper Cone: r = 2.4 cm, l = 3 cm, h = 1.8 cm
Volume of cone
Lower Cone: r = 2.4 cm, l = 4 cm, h = 3.2 cm
Volume of cone
=13πr2h=13×3.14×2.42×1.8=10.85184cm3 Curved surface area of cone
=πrl=3.14×2.4×3=22.608cm2 Lower Cone: r = 2.4 cm, l = 4 cm, h = 3.2 cm
Volume of cone
=13πr2h=13×3.14×2.42×3.2=19.2916cm3 Curved surface area of cone
=πrl=3.14×2.4×4=30.144cm2 Total volume = 19.29216 + 10.85184 = 30.144 cm
Total surface area = 30.144 + 22.608 = 52.752 cm