A rigid body is made of three identical thin rods, each of length L fastened together in the form of letter H. The body is free to rotate about a horizontal axis that runs along the length of one of the legs of the H. The body is allowed to fall from rest from a position in which the plane of H is horizontal. What is the angular speed of the body when the plane of H is vertical?
Let length of each rod be L and mass of each rod is m
CM of the middle rod is at L2
CM of the end arm rod of the H is at L2
CM of the system containing end and middle rod =ml2+ml2m=34L
MI about the axis for the middle rod
=ml23
MI of the end arm with entire mass concentrated at the end of the middle rod
ml2
Total MI
=ml23+ml2=43ml2
Total PE at the time of its fall=PE=Total mass ×g×height of CM
PE=2mg×34l
KE of the rotating rod system is given by
=12Iw2
=1243ml2w2
At the vertical position all PE is converted to KE. So,
=12×43ml2w2=2mg×34lw=32√gl