wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s–1. If 20% of its initial energy is lost due to Martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it? Mass of mars = 6.4× 1023 kg; radius of mars = 3395 km; G = 6.67× 10-11 N m2 kg–2.

Open in App
Solution

Initial velocity of the rocket, v = 2 km/s = 2 × 103 m/s

Mass of Mars, M = 6.4 × 1023 kg

Radius of Mars, R = 3395 km = 3.395 × 106 m

Universal gravitational constant, G = 6.67× 10–11 N m2 kg–2

Mass of the rocket = m

Initial kinetic energy of the rocket =

Initial potential energy of the rocket

Total initial energy

If 20 % of initial kinetic energy is lost due to Martian atmospheric resistance, then only 80 % of its kinetic energy helps in reaching a height.

Total initial energy available

Maximum height reached by the rocket = h

At this height, the velocity and hence, the kinetic energy of the rocket will become zero.

Total energy of the rocket at height h

Applying the law of conservation of energy for the rocket, we can write:


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
kinetic Energy
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon