By principle of conservation of energy, we have
(M.E.)initial=(M.E.)final
(M.E.)initial=Total energy of the rocket at the surface of the earth =K.E.initial+P.E.initial
(M.E.)final=Total energy of the rocket at a height h=K.E.final+P.E.final
Given, the rocket starts vertically upwards with speed v0
Let the speed of the rocket at height h be v and mass of earth and rocket be M and m respectively and radius of earth be R.
Then,
(M.E.)initial=12mv20−GMmR
(M.E.)final=12mv2−GMmR+h
12mv20−GMmR=12mv2−GMmR+h
12mv20−12mv2=GMmR−GMmR+h
12m(v20−v2)=GMm(1R−1R+h)
12m(v20−v2)=GMm(hR(R+h))
We know, GM=gR2
12m(v20−v2)=gR2m(hR(R+h))
12m(v20−v2)=gR2m⎛⎜
⎜
⎜
⎜⎝hR2(1+hR)⎞⎟
⎟
⎟
⎟⎠
12m(v20−v2)=mgh(1+hR)
(v20−v2)=2gh(1+hR)
Hence, proved.