A rod of length L and cross section area A has variable density according to the relation ρ(x)=ρ0+kx for 0≤x≤L2 and ρ(x)=2x2 for L2≤x≤L where ρ0 and k are constants. Find the mass of the rod.
M1=L/2∫0A(ρ0+kx)dx=(ρ0L2+kL28)A
M2=L∫L/2A(2x2dx)=23[L3−L38]=14L324A
Mtotal=M1+M2=(14L324+ρ0L2+kL28)A