A rod of length l slides between the two perpendicular lines.Find the locus of the point on the rod which divedes it in the ratio 1 : 2.
Let the two perpendicular lines be the coodrinates axes.Let AB be a rod length l.Let the coordinates of A and B be(a,0) and (0,b) respectively.As the rod slides the value of a and b change. So, a and b are two variables.Let P(h,k) be the point on the locus.Thenh=2×a+1×02+1⇒h=2a3⇒a=3h2and k=2×0+b×12+1⇒k=b3⇒b=3kfrom ΔAOB,we haveAB2=OA2+OB2⇒l2=[(a−0)2+(0−0)2]+[(0−0)2+(b−0)2]⇒l2=a2+b2⇒a2+b2=l2⇒(3h2)2+(3k)2=l2⇒9h24+9k2=l2⇒h24+k2=l29Hence,the locus of(h,k) is x24+y2=l29.