2(1−2sin2x)−2sinxcos−2sin2x=0
3sin2x+sinxcos−1=0
Diveded ny cos2x
∴3tan2x+tanx−(1+tan2x)=0
or 2tan2x+tanx−1=0
or (tanx+1)(2tanx−1)=0
∴tanx=−1,12 ∴cos2x=1−t21+t2=0,35
∴ (a) → (p,q,s)
(b) 2sin2(π2cos2x)=2sin2(πsin2x2)
∴cos2x=sin2x=2sinxcosx
or cosx(cosx−2sinx)=0
∴cosx=0 or tanx=12
cos2x=1−t21+t2=1−(1/4)1+(1/4)=35
∴ (b) → (q,s)
(c) 6(1+t2)−11t−2=0 or 6t2−11t+4=0
therefore(2t−1)(3t−4)=0
∴t=12,43⟹=(q,r)
Also when tanx=12,cos2x=35 as in (b)
∴ (c) → (s)
∴ (c) → (q,r,s)
(d) Divided by cos2x
∴3sec2x−tanx−7=0
3(1+t2)−t−7=0 or 3t2−t−4=0
or (3t−4)(t+1)=0 ∴t=tanx=−1,43
∴ (d) → (p,r)