Let the height of centre of the balloon be hm.
Given, balloon subtends an angle θ at the observes eye.
∴∠EAD=θ
In ΔACE and ΔACD,
AE=AD(length of tangents drawn from a external point to the ob are equal)
AC=AC(common), CE=CD(radius of ob)
∴ΔACE ≅ΔACD(SSS congruence sub)
⇒∠EAC=∠DAC(CPCT)
∴EAC=DAC=θ/2
In right angled ΔACD, sinθ/2=CD/AC
∴sinθ/2=a/AC
⇒AC=asinθ2=acosec(θ2) …………..(i)
In right angles ΔACB, sinϕ=BC/AC
∴sinϕ=hacosec(θ2) using (i)
⇒h=asinϕcosec(θ2)
Thus, the height of the centre of the balloon is asinϕcosecθ2
Hence proved.