We know,
xλx−→yλy−→z
t=0[rx]0[ry]0
t=4[rx]t[ry]t
[rx]0⇒ activity of x
[ry]0⇒ activity of y
Given:
At t=0, [rx]0=[ry]0
λx=0.6932⇒ Half-life for nuclei x
λx=0.6931⇒ Half-life for nuclei y
[Nx]0⇒ No. of active nuclei of x
[Ny]0⇒ No. of active nuclei of y
∴λx[Nx]0=λy[Ny]0
or [Nx]0[Ny]0=λyλx
Now maximum yield of y(Ny)t at t=4hr is :
[Ny]t=[Nx]0.λxλy−λx[e−λx.t−e−λy.t]+[Ny]0e−λy.t
=λy[Ny]0.λxλx[λy−λx][e−λx.t−e−λy.t]+[Ny]0e−λy.t
=λy[Ny]0[λy−λx][e−λx.t−e−λy.t]+[Ny]0e−λy.t
∴[Ny]t[Ny]0=[λyλy−λx.e−λx.t−λyλy−λxe−λy.t+e−λy.t]
=⎡⎢
⎢
⎢
⎢⎣0.6932×[0.6931−0.6932]×e(−0.693×42)+0.6932×[0.6931−0.6932]×e(−0.693×41)+e(−0.693×41)⎤⎥
⎥
⎥
⎥⎦
=0.25−0.06+0.06
[Ny]t[Ny]0=0.25
Hence, the ratio of the number of the active nuclei of y at t=4hours to the number at t=0 is 0.25.