A sample of an ideal gas γ1.5 is compressed adiabatically from a volume of 150 cm3 to 50cm3. The initial pressure and the initial temperature are 150 K Pa and 300 K. Find
(a) The number of moles of the gas in the sample
(b) The molar heat capacity at caonstant volume
(c) The final pressure and tempereture
(d) The work done by the gas in the process and
(e) The changr in internal energy of the gas
PV = nRT
Given, P + 150 KPa = 150 ×103 Pa,
V = 150cm3=150×10−6m3
T = 300 K
(a) n = PVRT=9.036×10−3
= 0.009 moles.
(b) CpCv=γ,CP−Cv=R
So, Cv = Rγ−1=8.30.5=16.55/moles.
(c) Given,
P1=150KPa=150×103Pa,
P2=? V1=150 cm3
= 150×10−6m3
γ = 1.5
V2=50cm3=50×10−6m3
T1=300K,T2=?
Since the process is adiabatic hence-
P1V1γ=P2V2γ
⇒150×103×(150×10−6)γ
= p2×(50×10−6)γ
⇒P2=150×103×(150×106)1.5(50×10−6)1.5
= 150000×(3)1.5
= 779.422×103Pa
= 780 KPa
Again,
P1−γ1 Tγ1=P1−γ1 T2γ
⇒(150×103)1−1.5×(330)1.5
= (780×103)1−1.5×T1.52
⇒T1.52=(150×103)1−1.5×(300)1.5×(3001.5)
= 11849.050
⇒T2=(11849.050)15
= 519.74 = 520
(d) dQ = W + dU
or W = -dU [dQ = 0, in adiabatic]
= -nCvdT
= - 0.009×16.6×(520−300)
= −0.009×16.6×220
= -32.8 J = -33 J
(e) dU = nCvdT
= 0.009×16.6×220=33J.