wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

asecθ+btanθ=1,a2sec2θb2tan2θ=5
Then a2(b2+4)=

A
3b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
9b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 9b2
asecθ+btanθ=1 ............ (1)
Squaring both the sides we get
a2sec2θ+b2tan2θ+2absecθtanθ=1 ..... (2)
a2sec2θb2tan2θ=5 ....... (3)
Adding equations (2) and (3) we get,
2a2sec2θ+2absecθtanθ=6
a2sec2θ+absecθtanθ=3
asecθ(asecθ+btanθ)=3
asecθ=3 .......... (Using eqn (1))
a=3cosθ .......... (cosθ=1secθ)
Substitute a in (1) we get
(3cosθ)secθ+btanθ=1
3+btanθ=1
btanθ=2
b=2cotθ ............. (1tanθ=cotθ)
a2(b2+4)=(3cosθ)2[(2cotθ)2+4]
=9cos2θ(4cot2θ+4)
=9cos2θ4(cot2θ+1)
=9cos2θ4cosec2θ
=36×cos2θsin2θ
=36cot2θ=9(2cotθ)2=9b2
Hence, a2(b2+4)=9b2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon