Let the number of books bought be \(x\). Then,
Cost of \(x\) books \(= Rs. 80 \Rightarrow\) Cost of one book \(=Rs \frac{80}{x}\)
If the number of books bought is \(x+4\), then
Cost of one book \(=Rs \frac{80}{x+4}\)
It is given that the cost of one book is reduced by one rupee.
\(\therefore \frac{80}{x} - \frac{80}{x+4}=1\)
\(\Rightarrow 80 \left(\frac{1}{x} - \frac{1}{x+4} \right) =1\)
\(\Rightarrow 80 \left \{ \frac{x+4-x}{x(x+4)} \right \}=1\)
\(\Rightarrow \frac{320}{x^2 + 4x}=1\)
\(\Rightarrow x^2 + 4x=320\)
\(\Rightarrow x^2 + 4x-320=0\)
\(\Rightarrow x^2 + 20x - 16x - 320 =0\)
\(\Rightarrow x(x+20) - 16(x+20)=0\)
\(\Rightarrow (x+20)(x-16) =0\)
\(\Rightarrow x = -20 ~or,~x=16 \Rightarrow x=16\) [\(\because x\) cannot be negative]
Hence, the number of books is 16