The correct option is C y(x.t)=0.02sin[(2πx)−(10πt)] m
General equation of wave travelling in positive x− direction
y(x,t)=Asin(kx−ωt+ϕ)
Given that
Amplitude (A)=20 cm or 0.02 m
wavelength (λ)=1 m
Angular wave number (k)=2πλ=2π m−1
Angular frequency ω=vk=10π rad/s
So, y(x,t)=0.02sin[2πx−10πt+ϕ] ........(1)
From the data given in the question ,
for x=0,t=0 ⟶y=0 & ∂y∂t<0
So, for y=0, we get
0.02sinϕ=0⇒sinϕ=nπ ....(2) Where n=0,1,2,3.....
For , ∂y∂t<0
−0.2πcosϕ<0⇒0.2cosϕ>0⇒cosϕ>0 .......(3)
From (2) and (3) we get,
ϕ=2nπ where n=0,2,4,6....
Now we know that
sin(2π+θ)=sinθ
Therefore,
y(x,t)=0.02sin[(2πx)−(10πt)] m