If at point P, tension is zero then mg cosθ=mv2r
Using conservation of energy,
v2=gl(1−cos θ)
∴mg cos θ=1l2(1−cos θ)⇒θ=cos−1(23)
∴ Height of point
P=l2+l2cos θ=5l6, from lowest point
v2=gl(1−23)=gl3⇒v=√gl3
Now the particle describes parabolic path. The height attained by the particle, from point P.
h=(v sin θ)22g=5 l54
∴ Highest point from lowest point will be
(5l6+5l54)=50 l54
(5l6+5l54)=50 l54